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Key findings:

 The use of the left eigenvectors, without the right ones, conveniently evaluate the matrix 

exponential;

 Although the use of only the left eigenvectors does not promise much gain in speed, it 

simplifies the development and support of the radiative transfer code, especially in C/C++;

 This approach is applicable for transfer of unpolarized or lineally polarized light;

 The known computation of eigenvalues in half-space is still applicable;

 Based on our experience and literature analysis, we believe this approach is new.
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 Abstract: 

We use only left eigenvectors to evaluate the matrix exponential in the method of discrete 

ordinates for the vector radiative transfer equation, which neglects circular polarization, in a 

plane-parallel atmosphere. This is contrary to a common practice of using the right eigenvectors 

to evaluate the matrix exponential combined with the left eigenvectors to avoid the inversion of 

the matrix of the right ones. Two numerical tests for Rayleigh and Aerosol scattering confirm our 

idea. For better explanation of our approach and for independent crosscheck of our results, we 

distribute an example in C/C++. 

Key words: matrix exponential, left eigenvectors, vector radiative transfer equation. 

1. Introduction 

In 2015, our Fortran 90/95 radiative transfer (RT) code IPOL, that simulates multiple scattering 

of Intensity and POLarization of the monochromatic solar radiation in a plane-parallel 

atmosphere, participated in a comprehensive  polarized (vector) RT codes intercomparison and 

confirmed high accuracy (Emde et al., 2015). Since then, we use IPOL to account for the effect 

of polarization of light in the Multi-Angle Implementation of Atmospheric Correction (MAIAC) 

algorithm (Lyapustin et al, 2018) and as a benchmark for our Successive ORDers RT code 

SORD (Korkin et al., 2017). Over time, we realized the need for further development of IPOL. 

This includes, but not limited to, the speed-up of the code to accelerate our research, and the 

translation from Fortran 90/95 into C/C++ for natural integration with the algorithm MAIAC. 
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Similar to RT code Pstar (Nakajima and Tanaka, 1986; Ota et al., 2010), IPOL simultaneously 

uses the method of discrete ordinates (Chandrasekhar, 1950) and the matrix-operator method 

(Plass et al., 1973). In such RT codes, evaluation of the matrix exponential is a key and the most 

time consuming part. For solution to that problem, the eigendecomposition is “likely to be most 

efficient for problems involving large matrices and repeated evaluation” of the matrix 

exponential (Moler and Van Loan, 2003: p.20). The eigendecomposition is a widely used linear 

algebra technique. We refer the reader to the Wolfram MathWorld’s “Eigen Decomposition”2 or 

the Wikipedia’s “Egendecomposition of a matrix”3 (note different spelling) articles for in-depth 

reading. Later in Section 2, we use only a few relations from these articles. 

In IPOL as a full vector (including circular polarization) discrete ordinates RT code, the 

eigendecomposition problem requires complex numbers (Siewert, 2000; Spurr, 2008, Rozanov et 

al., 2014). However, in the Earth atmosphere, the degree of circular polarization is negligibly 

small (Kawata, 1978; Lenoble et al., 2007: p.483). Modern space (Deschamps et al, 1994; 

Mishchenko et al, 2007; Liu and Diner, 2017; Fougnie et al, 2018; Li et al., 2018) and ground (Li 

et al., 2014) passive polarimetres are not designed to measure the circular component. If it is 

dropped from numerical simulations, the vector RT codes deal with a 3 x 3 phase matrix and the 

eigendecomposition problem requires only real arithmetic, similar to the scalar case (Spurr, 

2008: Section 7.3.1.3; Ota et al, 2010: p.885). Our experience also indicates that it is safe to skip 

the circular polarized light and still get accurate results for the linear polarization components 

[Q, U], not to mention the total intensity I, regardless the atmospheric conditions (Korkin et al, 

2017). Moreover, “the order of the algebraic eigenvalue problem can be reduced by a factor of 

2” (Stamnes and Swanson, 1981: Abstract). This reduction tremendously speeds up the 

simulations. 

Naturally, we decided to skip the circular polarization while translating IPOL from Fortran into  

C/C++. When doing that, we noticed a way to use the eigendecomposition technique in a slightly 

more convenient manner, than it is usually done. This paper describes all necessary details of our 

approach, which seems to be new. We aim to use as few equations as possible without sacrificing 

clarity. To achieve this goal, we (a) developed and distribute a C/C++ source code that 

                                                           
2 http://mathworld.wolfram.com/EigenDecomposition.html (accessed 01/01/2019) 
3 https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix (accessed 01/01/2019) 
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implements our approach, and (b) explicitly indicate equation numbers or, at worst, section or 

page number in references. The next Section 2 discusses theoretical background. In Section 3, 

we confirm our approach using two numerical examples and explain how these results can be 

reproduced with our C/C++ sample code. We conclude the paper with a summary. 

2. Theoretical background 

Solution to the RT equation using the method of discrete ordinates involves several main steps: 

expansion of the phase function or matrix over corresponding polynomials; the use of the 

Fourier series to decouple the dependence of the radiation field on azimuth; discretization of the 

scattering integral over cosine of the zenith angle µ using Gauss quadrature of an order 2N, 

where N is the number of ordinates per hemisphere. For the 3 components of the Stokes vector 

per ordinate, these steps give a system of 6N differential equations over optical depth τ for each 

Fourier harmonic m. All systems are independent and identical. Further, we skip the Fourier 

index m. Numerous publications discuss these steps in details – see e.g. Lenoble (1985), Thomas 

and Stamnes (1999), Hovenier et al. (2004). 

In this paper, we immediately start with integration of the system of differential equations over τ. 

For simplicity, we assume a homogeneous non-emitting atmosphere of the total optical depth τ0, 

and seek for a solution at 2N Gauss nodes. One computes the radiation field at arbitrary µ from 

the solution at the Gauss nodes using integration of the source function or the dummy node 

techniques (Chalhoub and Siewert, 2000). In equations below, we use the lower case bold letters, 

e.g. α, for a 3N x 3N matrices; “→” for column vectors of 3N elements; and the capital bold 

letters, e.g. B, for 6N x 6N matrices. Radiation reflected from top and transmitted through bottom 

of the atmosphere, ( 0, 0)    i  and 0( 0, )     i  respectively, satisfy a system of equations 

(Karp et al, 1980: Eq.(8)): 

  
0

0 0

0 0

00 0

(0) ( ) ( )
exp( ) exp ( )

(0) ( ) ( )
d
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  
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      
            
         


i i f

B B 1
i i f

 . (1) 

In Eq.(1), ( 0, 0)    i  and 0( 0, )     i  are the boundary conditions; B simulates multiple 

scattering from all Gauss directions to a given direction; 1 is a unit matrix. B depends on the 
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single scattering albedo ω0 and a 3 x 3 scattering matrix expansion moments (Hovenier et al., 

2004: Section 2.8). Without circular polarization, B has the following form (Stamnes and 

Swanson, 1981: Section 3) 

 
 

  
 

α β
B

β α
 . (2) 

Note, that the sign at β in our Eq.(2) differs from the one in Stamnes and Swanson (1980) due to 

opposite definition of the positive µ direction. In the right hand side of Eq.(1), the vectors 0( ) f  

and 0( ) f  come from the single scattering of the direct solar beam; µ0 is the cosine of the solar 

zenith angle. 

In the method of spherical harmonics, Karp et al. (1980: p.394) decomposed the matrix 

exponential using the right eigenvectors of the system matrix B, Eq.(2): 

 1

R Rexp( ) exp( )   B U Γ U  , (3) 

where Γ is a diagonal matrix of eigenvalues, known to occur in pairs with equal magnitude and 

different sign (Stamnes and Swanson, 1981: Eq.(12)) except for a conservative case, ω0 =1.0, in 

which we are not practically interested. The columns of UR are the corresponding right 

eigenvectors. Further, Karp et al. (1980: Eq.(12)) applied 1

R


SU  to both sides of Eq.(1) 
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 , (4) 

where S is a diagonal scaling transformation matrix 

 
exp( )

 
  

  

1 0
S

0 γ
  (5) 

that removes exponents with positive eigenvalues γ, and 0exp( ) H S Γ . A particular form of S 

differs, depending on the sequence of eigenvalues. These same steps are used in the methods of 
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spherical harmonics (Karp et al., 1980: Eq.(8); Lyapustin et al, 2010: Eq.(6.15)) and discrete 

ordinates (Budak et al., 2015: Eqs.(7)-(9)). 

The explicit matrix inversion, 1

R


U , is avoided by using the transposed matrix of left 

eigenvectors, T

LU  (Waterman, 1981; Ota et al, 2010: Eq.(65); Efremenko et al, 2017: Eq.(39)), 

and the following relations known from linear algebra (e.g., see the Wolfram MathWorld’s 

“Eigenvector”4) 

 1 T T

R L R L L R, , ( ) ( )    U U Γ Γ Γ U B U B . (6) 

In Eq.(6), L ( )U B  means “left eigenvalues of matrix B”. Efremenko et al. (2013: Abstract) 

reported that the use of the left eigenvectors instead of the matrix inversion accelerates 

computations by about 15%. 

The use of both left and right eigenvectors causes three problems. First and foremost, the left and 

the right eigenvectors must be properly normalized (Efremenko et al. 2017: Eqs.(32)-(33)). The 

normalization complicates the developing, debugging and support of the RT code. It also utilizes 

slow numerical operations, e.g. square root (although, it is of course not a bottleneck in RT 

codes). Second, the left and right eigenvectors are computed from the direct and transposed 

matrix B, respectively – see Eq.(6). One has to either compute the two, or use a transpose 

operation, which prevents from efficient storage of a square matrix in memory. Finally, the RT 

theory is complicated enough – the use of both right and left eigenvectors adds more complexity. 

Instead of using both left and right eigenvectors, we can use only left eigenvectors and the 

following representation of the system matrix B in Eq.(1) 

 1

L Lexp( ) exp( )  B U Γ U .  (7) 

The scaling transformation SUL yields for Eq.(1) 

                                                           
4 http://mathworld.wolfram.com/Eigenvector.html (accessed 01/01/2019) 

http://mathworld.wolfram.com/Eigenvector.html
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fi i
. (8) 

Eq.(8) does not use the inverse matrix and the right eigenvectors at all and normalization of UL is 

not important. Given that the transpose of the system matrix does not change its symmetry 

 
T T

T

T T

  
  
 

α β
B

β α
 , (9)  

it is possible to efficiently solve the eigenproblem following Stamnes and Swanson (1981: 

Section 3). In particular, the matrix of the left eigenvectors is known to be symmetric 

(Efremenko et al., 2017: Eq.(37)): 

 1 2

L

2 1

 
  
 

u u
U

u u
, (10)  

For numerical test of our idea, we developed a C/C++ code that solves Eq.(8). In the next 

section, we show two examples and describe how to reproduce our results. 

3. Numerical results and discussion 

In this section, we show results for two numerical simulations, Rayleigh (Emde et al., 2015: Case 

A1-1) and Aerosol (Wauben and Hovenier, 1992: Model 1 – prolate spheroids). We use our full 

vector RT code IPOL as a benchmark. For simplicity, we consider only homogeneous 

atmospheres over black surface and compute solution at 2N = 16 double Gauss nodes (Sykes, 

1951), N = 8 nodes per hemisphere. In the Rayleigh scenario, we replace the true conservative 

case ω0 = 1.0 with a “pseudo-conservative” ω0 = 0.99999999 (eight digits) which is a widely 

used practice (Stamnes et al., 1988; Lyapustin et al., 2010). In the Aerosol scenario, we compute 

only azimuthally averaged Stokes vector (the Fourier harmonic m = 0) similar to Lyapustin and 

Rozanov (2010) which makes U = 0 in that scenario. 

Tables 1 and 2 summarize the results. Table 1, left to right, defines the input parameters: name of 

the case; cosine of the solar zenith angle µ0; the total optical thickness of the atmosphere τ0; the 
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single scattering albedo ω0; the total number of the phase matrix expansion moments K; the 

number of the Gauss nodes per hemisphere N; the peak value of the phase function p(0o); the 

average scattering cosine g; and a reference for each scenario. Table 2 shows numerical results 

generated by the C/C++ prototype of IPOL for both cases. We found perfect agreement in all the 

indicated digits, except for only 1 digit, marked in bold, which differs by 1 unit. Figures 1 and 2 

show the comparison for the total intensity I, and the Q-component versa the zenith angle. 

Independent reproducibility is often omitted nowadays (Fomel and Claerbout, 2009; Peng, 2011; 

LeVeque et al., 2012). In order to maintain this essential criterion of scientific research, we 

developed and publicly distribute a C/C++ example code that reproduces our results. It is 

available from GitHub5 or by email request from the corresponding author. We link the code 

against the freeware C/C++ GNU Scientific Library6, v.2.5. The package includes the following 

six files (five *.cpp source codes and one *.txt) zipped in jqsrt_2019a.zip: 

domm0.cpp – is a subroutine that implements equations from Section 2 using the method of 

discrete ordinates (dom) for a Fourier harmonic m=0. We emphasize, domm0 is only a prototype 

subroutine: it does not compute quantities at arbitrary µ, it was not yet tested for an atmosphere 

with many layers (although a loop over layers is included), it defines excessive arrays to compute 

the U-component for m > 0, it does not include single scattering correction or reflecting surface. 

The sole purpose of domm0 is to reproduce the reported results. 

The domm0 subroutine does not compute B, Eq.(2), neither it computes BT, Eq.(9). Stamnes and 

Swanson (1981: Eq.(12)), formulate and solve the half-space eigenproblem using (α - β) and (α + 

β). We do the same, except for the transposed matrices: (αT - βT) and (αT + βT). For efficiency, 

we create all the matrices already transposed instead of explicitly call the GSL transpose function 

gsl_matrix_transpose(). Further, we note (αT - βT) uses only even orders of the 

expansion coefficients, while (αT + βT) – only odd. This explains the requirement for the domm0 

input: the number of the used expansion moments nk must be odd with a minimum value of 3 

for Rayleigh scattering. Thus, the considered Aerosol case uses nk=2*N+1=17 expansion 

                                                           
5 https://github.com/korkins/jqsrt_2019a (accessed 01/01/2019) 
6 https://www.gnu.org/software/gsl/ (accessed 01/01/2019) 

https://github.com/korkins/jqsrt_2019a
https://www.gnu.org/software/gsl/


8 
 

moments out of 34 total. For an adequate comparison, the single scattering correction was 

switched off in the Fortran version of IPOL. 

Another benefit of our approach, Eq.(7), specifically related to the C/C++ language, is that the 

left eigenvectors are the row vectors. Thus the matrix of left eigenvectors, Eq.(10), is located in 

memory in a native C/C++ row-major order. In Fortran, UL must be transposed for efficiency. 

gauszw.cpp, rayxk.cpp, and read2d.cpp – compute the Gauss nodes, Rayleigh 

scattering matrix expansion moments for the first test, and read in a txt file with the Aerosol 

expansion moments for the second test, respectively. They are thoroughly commented and 

should be self-explanatory; 

test_domm0.cpp is the main program. It creates input for both cases, calls domm0.cpp and 

other subroutines, and prints out the result on the screen; 

Finally, Xk0036_0695.txt is an ASCII file with the expansion moments for the Aerosol 

case. In that file, the columns left to right are: k – the number of the expansion moment starting 

from 0 followed by 6 columns for expansion moments for the elements of the scattering matrix 

[a1 a2 a3 a4 b1 b2] - a4 and b2 are not used (Hovenier et al, 2004: Appendix C). 

A natural question is the gain of speed. Since we do not compute the right eigenvectors at all and 

do not transpose matrices, we definitely anticipate a somewhat higher gain in performance than 

the 15% reported earlier (Efremenko et al, 2017: Abstrtact). But a detailed performance analysis 

is problematic because we have never developed a “slow” version that use both left and right 

eigenvectors. Neither we can use our Fortran 90/95 version of IPOL for a quick check, because it 

computes the full Stokes vector using complex arithmetic, do not rely on the solution of the 

eigenproblem in a half-space, and hence very time consuming. However, we believe the main 

advantage of our approach lies in simplification of theoretical background and coding. 

Summary 

We apply only left eigenvectors with the Karp’s et al. (1980) scaling transformation to evaluate 

the matrix exponential in a plane-parallel vector radiative transfer equation. This is contrary to a 
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widely used right eigenvectors approach, which either requires an explicit inversion of a matrix 

of the right eigenvectors (one per each optical layer) or the combined use of the right and left 

eigenvectors to avoid this inversion. Our approach avoids complications related to the proper 

normalization when both the left and right eigenvectors are used, and hence makes an RT code 

easier to develop and debug. It also uses the known half-space eigenproblem and hence 

applicable for efficient numerical simulation of unpolarized or linear polarized light scattering 

with the methods of discrete ordinates or spherical harmonics. Due to the left eigenvectors are 

essentially row vectors, the implementation of our approach in C/C++ is preferable. We 

demonstrate two numerical examples and offer a GNU Scientific Library-dependent C/C++ 

source code, https://github.com/korkins/jqsrt_2019a, for independent crosscheck of the reported 

results. We presented numerical results for azimuthally averaged quantities only. However, for 

cases with azimuthal dependence and non-zero U-component of the Stokes vector, the T-

polynomials possess the same symmetry with respect to ±µ as the Legendre and R-polynomials, 

involved in our tests (Hovenier et al, 2004: Appendix B). 
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Figure 1: I and Q components on top (TOA, τ = 0) and bottom (BOA, τ = τ0) of atmosphere for the Rayleigh case at Gauss nodes. Dot 
markers – C/C++, blue line – Fortran. See Table 1 for input.
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Figure 2: Same as Figure 1 except for the Aerosol case. See Table 1 for input.



Table 1: Input parameters for numerical tests. See Section 3 for details.

Case µ0 τ0 ω0 K N p(0o) g Reference

Rayleigh 1 0.5 1.0 3 8 1.5 0 Emde et al. (2015: Case A1-1)

Aerosol 0.6 1 0.95 36 8 16 0.695 Wauben and Hovenier (1992: Model 1)



Table 2: Numerical results for the C/C++ code. All digits agree with the Fortran computations, 
except for the last digit in I (µ=0.1017), Rayleigh case, differs by one unit – marked red. 
Negative and positive Gauss nodes, µ, correspond to radiation at top (reflected) and bottom 
(transmitted) of atmosphere, respectively. See Table 1 for input.

Case: Rayleigh Aerosol
µ I Q I Q

-0.0199 9.13232E-02 -7.54817E-02 8.26495E-02 2.85711E-04

-0.1017 9.11630E-02 -7.19422E-02 8.34655E-02 2.92456E-04

-0.2372 8.12421E-02 -5.80813E-02 7.30460E-02 1.91619E-04

-0.4083 6.95400E-02 -4.02927E-02 5.44124E-02 -5.04486E-05

-0.5917 6.27695E-02 -2.51031E-02 3.80289E-02 -2.82670E-04

-0.7628 6.01544E-02 -1.35367E-02 2.67002E-02 -2.15704E-04

-0.8983 5.97108E-02 -5.52871E-03 2.03950E-02 -6.85303E-05

-0.9801 5.99419E-02 -1.05280E-03 1.75805E-02 -1.22715E-05

0.0199 6.68614E-02 -5.16898E-02 6.13960E-02 2.80410E-04

0.1017 7.46133E-02 -5.62263E-02 7.87672E-02 3.93080E-04

0.2372 7.29682E-02 -5.09112E-02 1.00791E-01 5.05020E-04

0.4083 6.50852E-02 -3.71982E-02 1.19207E-01 4.59117E-04

0.5917 5.98697E-02 -2.37405E-02 1.26586E-01 2.37564E-04

0.7628 5.79301E-02 -1.29607E-02 1.03563E-01 1.86095E-04

0.8983 5.77966E-02 -5.32793E-03 7.55802E-02 1.28067E-04

0.9801 5.81608E-02 -1.01767E-03 6.02075E-02 3.24825E-05
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